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Estimates of the Laplacian Spectrum and
Bounds of Topological Invariants for

Riemannian Manifolds with Boundary II

Luca Sabatini

Abstract

We present some estimate of the Laplacian Spectrum and of Topological
Invariants for Riemannian manifold with pinched sectional curvature
and with non-empty and non-convex boundary with finite injectivity
radius. These estimates do not depend directly on the the lower bound
of the boundary injectivity radius but on the bounds of the curvatures
of the manifold and its boundary.

1 Introduction

Estimates of the first non zero eigenvalue of the Laplace-Beltrami operator,
named in what follows for the sake of simplicity the Laplacian, acting on a com-
pact connected n–dimensional Riemannian manifold, have been calculated in
the last decades of the XX Century by several authors. Payne and Weinberger,
(1957) [7], Li and Yau, (1980) [5], Meyer, (1986) [6]) did estimate from be-
low the first non zero eigenvalue as function of the diameter diam(M, g) of a
compact connected Riemannian manifold of dimension n and of a function C
depending only on the product of the lower bound δ of Ricci curvature of the
manifold (Riccig ≥ −(n − 1)δ2g ) and the upper bound D of its diameter.
Cheng, (1975) [1], got upper bound of the Laplacian first non zero eigenvalue
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of a compact connected n-dimensional Riemannian manifold as the sum of a
part depending on the lower bound of Ricci curvature δ and a part depend-
ing on diam(M, g) , via two constants Π1(n) and Π2(n) depending of the
dimension n only. Estimations are thus synthesized in the following chain of
inequalities:

C(D · k)

diam2(M, g)
≤ λ1(M, g) ≤ Π1(n) δ +

Π2(n)

diam2(M, g)
. (1.1)

Meyer shown also that, for manifolds with non-empty and non-convex bound-
ary (see Definition 2.6), if the boundary injectivity radius inj∂M goes to zero,
the Laplacian first non zero eigenvalue blows up. Estimates from below have
been obtained by the writer in 2019 (see [8]), working on manifold with non-
empty boundary and using the unitary approach of the double manifold.
This method does allow to get a compact connected Riemannian manifold
with empty boundary, the double manifold (M]M, g]g) , pasting two isomet-
ric copies of the same manifold (M,∂M, g) with non-empty boundary along
their common boundary ∂M . The double manifold has a natural structure
of C∞−manifold, however in a neighborhood of the gluing surface, the equa-
tor of the double manifold, the sectional curvature can reach negative values
still high, this is the case of manifolds with non-convex boundary. This is the
reason why estimates are not directly available if a finite lower bound of the
curvature is required. To get them it is necessary to regularize the metric in a
suitable neighborhood of the equator in such a way to obtain a new metric g̃ ,
isometric to g when restricted to each copy of the component manifolds and
with the strong condition of the uniform control from below of the sectional
curvature. Thanks to this regularization, estimates of the first eigenvalue of
Laplacian are available and the blow up pointed out by Meyer is evident since
the constants depending on the lower bound a of the boundary injectivity ra-
dius go to infinity if a → 0+ . In this paper, under the stronger assumptions
“ pinched sectional curvature of the manifold ” −k2 ≤ σ ≤ k2 and “ pinched
principal curvatures of the boundary ”−η ≤ h∂M ≤ η for some fixed positive
numbers k and η , we fix the lower and non zero bound a of the boundary
injectivity radius, getting lower and upper limitations of the new metric g̃ on
M]M , controlling the sectional curvature from below in a uniform manner.
These bounds do not depend on the value of a. The following theorem collects
the main functional results of this paper.

Main Theorem Let (M,∂M, g) be a compact connected n-dimensional Rie-
mannian manifold with pinched sectional curvature for some positive real k,
i.e. −k2 ≤ σ ≤ k2 , let ∂M be its non-empty and non-convex boundary whose
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injectivity radius and main curvatures are such that

inj∂M ≥ a, −η ≤ h∂M ≤ η.

for some strictly positive real numbers a and η . Setting k′ = min{1, β} · k ,
(β is the real number defined as β = infα∈R+{α ≥ 1

a·k} ) then there exists
a C∞ metric g̃ on (M]M, g̃) , isometric to g in each copy of M and such
that

1. the sectional curvature has finite lower bound

σg̃ ≥ −
[
k2 +

(
2η + 2k′ +

k2

η

)
sup{η, k}

]
.

2. this metric is pinched, i.e.

(
sinh

(
k
2k′

)
sinh

(
k
k′

) )2

· g ≤ g̃ ≤

[
cosh

(
k

2k′

)
+ sup

(
1,
η

k

)
· sinh

(
k

k′

)]2n−2
·

(
sinh

(
k
2k′

)
sinh

(
k
k′

) )2n−4

· g .

�

Thanks to this theorem we get an estimate of the diameter of the doubled
manifold which does not depend explicitly on the injectivity radius of the
boundary. A direct consequence of the theorem is the estimate of the first non
zero Laplacian eigenvalue and of the topological invariants of the manifold
(M,∂M, g) .

Estimates from above of the p–th eigenvalue are also calculated, extending
a partial result for 2-dimensional manifolds of the writer (see ([9]), 2018) and
using a previous result of Cheng.

2 Definition of the doubled manifold (M]M, g]g) and gen-
eral properties of the spectrum.

We summarize here how to build the “ double Riemannian manifold (M]M, g]g) ”
starting from a Riemannian manifold with non-empty boundary (M,∂M, g) ,
the definition and the properties of the Laplacian and of its spectrum, refer-
ring to [8] to a complete and exhaustive analysis. The construction of a C∞
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metric on the doubled manifold naturally arises, however its regularization
controlling from below the sectional curvature is hard but unnecessary here,
we assume indeed that the new metric g̃ on the doubled manifold M]M holds
suitable properties, in this case also we refer to [8].

Let (M,∂M, g) be a Riemannian manifold with compact and differentiable
boundary ∂M ; from the disjoint union M1 qM2 of two copies of the man-
ifold M and the canonical maps ψ1 and ψ2 of M on M1 and M2 we get
the double M]M of (M,∂M) as the quotient manifold of M1 qM2 via the
equivalence relation: ψ1(x) ∼ ψ2(x) if and only if x ∈ ∂M ; in other words
we define the doubled manifold as (M × {1,−1})/ ∼ , where the equivalence
relation ∼ is defined as:

(x, i) ∼ (y, j) if and only if (x = y and i = j) or (x = y ∈ ∂M and any i, j)

The two boundaries, that in this way are identified, yield a (n − 1)−hyper-
surface named as “ the equator ” of M]M . The manifold M]M can be
equipped by a structure of C∞ manifold in the following way:

let p : (M × {1,−1}) → M]M be the canonical surjection, U ⊂ p(∂M ×
{−1}) = p(∂M × {1}) an open neighborhood in M]M and N the g−unitary
inward normal field of ∂M , the local chart Φ is defined as:

Φ(t, x) =

{
p (expx[t ·N(x)], 1) if t ≥ 0
p (expx[−t ·N(x)],−1) if t < 0

.

If ε ≤ injM ( injM the injectivity radius of M), the exponential normal
map is a diffeomorphism of ] 0, ε [×∂M on its image in M and the changes of
charts are C∞-maps.

Let j : M → M × {1} be the isometric immersion of M in M × {1} and
let Σ: M]M →M]M be the symmetry to respect the equator swapping the
two copies of M in M]M : Σ(M × {1}) = (M × {−1}). The map j induces
on M × {1} (resp. on M × {−1} ) the metric g1 = j∗(g) , (resp. the metric
g−1 = Σ∗(g1) ). The passage to the quotient with respect the equivalent rela-
tion ∼ induces the metric g]g on M]M .

Fact 2.1. The metric g]g , as above defined on M]M is C0 but not C1 ;
moreover it is a C0−limit of C∞−metrics gk defined on M]M .

Proof: See [8]. �
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Let (M, g) be a closed C∞ Riemannian manifold of dimension n, the
metric g and the Laplace operator write, in a local system of coordinates
(x1, x2, . . . , xn) , respectively as g =

∑
i,j gijdx

i ⊗ dxj and ∆ =
√

det g−1 ·
∂
∂xi

(√
det g · gij · ∂

∂xj

)
; it is well known that the Laplacian is a self adjoint

elliptic operator having a discrete sequence of positive eigenvalues going to
infinity: 0 ≤ λ0 < λ1 ≤ λ2 ≤ · · · ≤ λi ≤ · · · . Moreover, each eigenspace
E(λi) has finite dimension, the direct sum of them is dense in C∞(M) and
the Hilbert space L2(M,dvg) ( dvg is the Riemannian measure on M ) has a
Hilbertian base of eigenfunctions.

Classic Lemma 2.2. For C0−metrics on (M]M, g]g) the spectrum of the
Laplacian coincides with the critical values of the functional

u 7→ R(u) =

∫
M]M

|du|2(g]g)dv(g]g)∫
M]M

u2 dv(g]g)

defined on H0 = H1(M, g) \ {0}. The critical points are calculated using the
min-max principle or the max-min principle, i.e.

λi(M]M, g]g) = inf
Ei+1

max
u∈E\{0}

∫
M]M

|du|2g]gdvg]g∫
M]M

u2 dvg]g

= sup
Ei

inf
u∈E⊥i \{0}

∫
M]M

|du|2g]gdvg]g∫
M]M

u2 dv(g]g)

being Ei ⊂ H0 any vectorial subspace of dimension i in H0.

Proof: See [2] . �

Lemma 2.3. Let {gk}k∈N be a sequence of C∞−metric converging in the
C0−topology to a C0-limit metric on M]M , then:

(i) diam (M]M, g]g) = limk→+∞ diam(M]M, gk);

(ii) Vol(M]M, g]g) = limk→+∞Vol(M]M, gk);

(iii) λi(M]M, g]g) = limk→+∞ λi(M]M, gk);

Proof: See [8]. �

Definition 2.4. A function u ∈ C∞(M,∂M, g) solves
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• the Dirichlet problem when{
∆u = 0
u |∂M = 0

• the Neumann problem when{
∆u = 0
∂u
∂N

∣∣
∂M

= 0

being N the inward unit normal to the boundary ∂M .

Classic Lemma 2.5. Let (M,∂M, g) be a Riemannian manifold with non-
empty boundary and (M]M, g]g) its double; then

(i) the spectrum of (M]M, g]g) is the union of the Dirichlet and of the Neu-
mann spectrum of (M,∂M) :

{λi(M]M, g]g) | i ∈ N} =
{
λDi (M)i | i ∈ N \ {0}

}
∪
{
λNi (M)i | i ∈ N

}
each eigenvalue has to be counted with its own multiplicity;

(ii) there exists a Hilbertian base of eigenfunctions such that the restriction
to each copy of M is an eigenfuction of Dirichlet or Neumann problem.

Proof: See [8] �

We give here finally the following

Definition 2.6. A Riemmanian manifold (M,∂M, g) with non-empty bound-
ary is said with non-convex boundary if the second fundamental form of the
boundary II∂M is positive definite with respect to the inward normal N.

3 Proof of the Main Theorem

The construction of the new metric g̃ in the doubled manifold M]M and
with the control from below of the sectional curvature is the same as in the
Appendix of [8]; we send again to it for more details.

In what follows, if there is not ambiguity, we shall denote with k the posi-
tive determination of

√
k2 .
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Lemma 3.1. Let (M,∂M, g) be a n–dimensional Riemannian manifold with
pinched sectional curvature −k2 ≤ σ ≤ k2 for some real k, with non-empty
boundary ∂M whose injectivity radius is greater than a strictly positive real
constant a. Let Ht = {x ∈M s.t. d(x, ∂M) = t} be the hyper-surface at t−di-
stance from the boundary ( t < a ) and let ht be its second fundamental form
(with respect to the inward normal). Running x all over Ht , if

• hmax(t) is the maximum among the biggest eigenvalues of ht and

• hmin(t) is the minimum among the lowest eigenvalues of ht ,

then, for every t < min{a, 1
2k} we get

hmax(t) ≤ sup{η, k} and hmin(t) ≥ −2η − k2

η
. (3.1)

Proof: Let x0 ∈ Ht be a point of the hyper-surface Ht and let γ be the
geodesic passing in x0 and normal to the boundary, parametrized with the
arc length. For every Jacobi field V along γ and normal to it we have

hmax(t, x) = sup
ht|x(V, V )

g(V, V )
.

Let Ṽ the the Jacobi field that reaches the sup, we have

hmax(t, x) =
g
(
Dγ̇ Ṽ , Ṽ

)
g
(
Ṽ , Ṽ

) .

Taking Ṽ such that
∥∥∥Ṽ (0)

∥∥∥ = 1 , we have∥∥∥Ṽ ′(0)
∥∥∥ =

∥∥∥Dγ̇ Ṽ
′(0)
∥∥∥ = η ≤ hmax(0)

To get a comparison we consider the corresponding Jacobi fields in the spaces
of constant sectional curvature equal to −k2 or k2 ; these Jacobi fields will
be denoted by a under-script 0 . If σ ≥ −k2 , the Jacobi field writes

Ṽ0(t) =
(η
k

sinh kt+ cosh kt
)
v(t)

being v(t) the parallel transport of the vector v(0) along γ and such that
g0(v(0), γ̇(0)) = 0 . For the Rauch Comparison Theorem we get

g(Ṽ ′, Ṽ )

g(Ṽ , Ṽ )
≤ g(Ṽ ′0 , Ṽ0)

g(Ṽ0, Ṽ0)
=
η cosh kt+ k sinh kt
η
k sinh kt+ cosh kt

=
η + k tanh kt

1 + η
k tanh kt
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which is an increasing function of η , it follows that

hmax(t, x) ≤ k · hmax(0) + k tanh kt

k + hmax(0) tanh kt
.

The function t 7→ hmax is an increasing function of t if hmax(0) < k , we
obtain

hmax(t) ≤ hmax(0) + k tanh kt

k + hmax(0) tanh kt
· k ≤ k;

however, if hmax(0) > k the function t 7→ hmax is a decreasing function,
getting

hmax(t)
hmax(0) + k tanh kt

k + hmax(0) tanh kt
· k ≤ hmax(0)

k
· k = hmax(0) = η .

proving the upper bound of the second fundamental form of the hyper-surface
Ht at t distance from the boundary, To get a lower bound of the second funda-
mental form of this hyper-surface we use as reference space the sphere of radius
k ; the related Jacobi field the field writes Ṽ0(t) =

(
η
k sin kt+ cos kt

)
v(t) . For

the Bishop Comparison Theorem we have

g(Ṽ ′, Ṽ )

g(Ṽ , Ṽ )
≥ g(Ṽ ′0 , Ṽ0)

g(Ṽ0, Ṽ0)
=

η − tan kt

η tan kt+ k
· k ;

this one is an increasing function of η and a decreasing function of t. Taking
t < 1

k arctan k
2η <

1
2k we obtain

hmin(t) ≥ −2η − k2

η
.

which ends the proof of the Lemma. �

We are able now to prove the two functional results of this paper collected
in the above cited Main Theorem:

Proposition 3.2. Let (M,∂M, g) be a compact connected Riemannian man-
ifold with non-empty and non-convex boundary such that the injectivity radius
of the boundary has a non zero lower bound a: inj∂M ≥ a > 0 . Let k and η
be two positive numbers such that

−k2 ≤ σ ≤ k2 − η ≤ h∂M ≤ η .
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Let k′ = min{1, β} ·k and β the real number defined as β = infα∈R+{α ≥
1
a·k} , then there exists a metric g̃ on the doubled manifold (M]M, g̃) , iso-
metric to g on each copy of M and such that

σ̃ ≥ −
(
k2 +

(
2η + 2k′ +

k2

η

)
sup{η, k}

)
.

Proof: As in [8] we interpose a thin cylinder of length l ≤ 1
k′ among the

two copies of the manifold (M, g) , we regularize the inherited metric g]g via
a C∞ function φ 1

2k′
: [ 0,+∞ [→ [ 0,+∞ [ in such a way to get estimates

independent on the injectivity radius of the boundary. Let φ 1
2k′

: [ 0,+∞ [→

[ 0,+∞ [ be this function such that φ′ 1
2k′

(
1
k′

)
= 1 and thus

∫ 1
k′
0

φ 1
2k′
′′(s)ds =

1 . Its second derivative φ 1
2k′
′′ has to satisfy the following properties:

• φ 1
2k′
′′ ∈ C∞( [0,+∞[ );

• the support of φ 1
2k′
′′ is compact and also contained in the open

]
0, 1k

[
;

•
∫ 1

k

0
φ 1

2k′
′′(t)dt = 1;

• 0 ≤ φ 1
2k′
′′(t) ≤ 2k′ and

• its graphic have to be symmetric with the right x− 1
2k′ = 0 .

It follows that φ′ 1
2k′

(
1
k′ − s

)
+ φ′ 1

2k′
(s) = 1 and that

∫ 1
k′
0

φ′ 1
2k′

(s)ds = 1
2k′ ; so

φ 1
2k′

(t) = 1
2k′ +

∫ t
0
φ′ 1

2k′
(s)ds remains. It follows that on M \M 1

2k′
the metric

.g̃ = dt2 ⊕ gφ(t) is isometric to the metric dt2[
φ′ 1

2k′
(φ−1

1
2k′

(t))

]2 ⊕ gt. Moreover we

emphasize here that, for every t, we have

0 ≤ φ′ 1
2k′

(t) ≤ 1

0 ≤ a(t) = φ′ 1
2k′

(φ−11
2k′

(t)) ≤ 1

0 ≤ a(t) · q′(t) = φ′ 1
2k′

′(φ−11
2k′

(t)) ≤ 2k′.

Exploiting the results of Lemma 3.1 we get

σ̃ ≥ σ + (1− q2(t))hmaxhmin − 2 q(t) · q′(t)hmax ≥ (3.2)

−
(
k2 +

(
2η + 2k′ +

k2

η

)
sup{η, k}

)
.
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which ends. �

We get thus the estimations of the regularized metric of the doubled man-
ifold thanks to the following

Proposition 3.3. With the same assumptions of the Proposition 3.2, there
exists a C∞ metric g̃ on M]M such that(

sinh
(
k
2k′

)
sinh

(
k
k′

) )2

· g ≤ g̃ ≤

[
cosh

(
k

2k′

)
+ sup

(
1,
η

k

)
· sinh

(
k

k′

)]2n−2
·

(
sinh

(
k
2k′

)
sinh

(
k
k′

) )2n−4

· g .

Proof: Let J be the set of all Jacobi fields normal to the geodesic γ , i.e.
J ∈ J⇔ g(J ′(t), γ′(t)) = 0 for all t . At point γ(t) = (x, t) we have

g̃ ≥ inf
J∈J

g(J(φ(t)), J(φ(t)))

g(J(t), g(J(t))
· g.

Vector J is indeed the image of a vector X , tangent to ∂M via the tangent
map to the chart Ψ : ∂M× ]0, a [→ M , Ψ(x, t) = expx(t · N(x)) (N is the
g–unitary inward normal field of ∂M ). We consider the vector field J(t) =
sinh[k(a− t)] u, u being a unit vector field normal to γ in the reference space
of sectional curvature identically equal to −k2 . We get

g (J [φ(t)], J [φ(t)])

g(J(t), J(t))
≥ g (J [φ(t)], J [φ(t)])

g(J(t), J(t))

≥
g
(
J [φ(t)], J [φ(t)]

)
g(J(t), J(t))

≥ J
2
(t+ ε)

J
2
(t)

≥
J
2
( 1
k′ − ε)

J
2
( 1
k′ )

,

where the first inequality comes from Rauch Comparison Theorem, while the

other ones derive from the fact that function |J|
J

is a decreasing function. This

chain of inequalities proves the left inequality of (ii). Let {µi}i=1,...n be the

relative eigenvalues of g̃ to g ; we have µ1 = 1 and µi ≥
(

sinh[k( 1
k′−ε)]

sinh k( 1
k′ )

)
for

i ≥ 2 . From what has just been proved in (i) we have

n∏
i=2

µi ≥
[
cosh(kt) +

η

δ
sinh(kt)

]2n−2
.
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This inequality shows an upper bound of each eigenvalue µi and consequently
proves the inequalities chain in (ii). We conclude keeping ε = 1

2k′ , ending also
the proof of the Main Theorem. �

4 Estimates of Laplacian Spectrum and of Betti Num-
bers

We are able now to extend the following

Theorem 4.1. (Payne and Weinberger (1957), [7]; Li and Yau (1980), [5];
Meyer (1986), [6]) Let (M, g) be a C∞ compact Riemannian manifold of
dimenision n , and δ and D two strictly positive constants such that Riccig ≥
−(n − 1) δ2g and diam(M, g) ≤ D , then there exists a constant C , which
depends only on the product δ ·D , such that:

λ1(g) · diam 2(M, g) ≥ C(δ ·D) .

Theorem 4.2. Let D , a , η and k be four strictly positive real numbers.
For every compact connected n-dimensional Riemannian manifold (M,∂M, g)
whose diameter is bounded from above by D and the sectional curvature is
pinched −k2 ≤ σ ≤ k2 , and such that its non-empty and non-convex boundary
∂M has injectivity radius bounded from below from a, and the main curvature
is pinched by η , i.e.

diam(M, g) ≤ D, −k2 ≤ σ ≤ k2, inj∂M ≥ a, and − η ≤ h∂M ≤ η;

then there exists a constant C ′ , depending on n , D , k and η , such that

λD1 (M, g) · diam2(M, g) ≥ C ′(n,D, k′, η)

λN1 (M, g) · diam2(M, g) ≥ C ′(n,D, k′, η).

being k′ = min{1, β} · k and β a real number defined as above.

Proof: The manifold M]M is equipped with the regularized metric g̃ such

that σg̃ ≥ −
(
k2 +

(
2η + 2k′ + k2

η

)
sup{η, k}

)
= −Θ(k, η) . We apply Theo-

rem 4.1 to the compact manifold with empty boundary (M]M, g̃) , getting

λ1(M]M, g̃) · diam2(M]M, g̃) ≥ C (Θ(K, η) ·D)

and
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λD1 (M, g) · diam2(M, g) ≥ C (Θ(K, η) ·D))

λN1 (M, g) · diam2(M, g) ≥ C (Θ(K, η) ·D)) .
(4.1)

where C is the constant as in Theorem 4.1. For the sake of simplicity we call
now

u(k, k′) =

(
sinh

(
k
k′

)
sinh

(
k
2k′

)) , v(k, k′, η) =

[
cosh

(
k

2k′

)
+ sup

(
1,
η

k

)
· sinh

(
k

2k′

)]

and, applying the Lemma 3.2, we obtain

u(k, k′)−2 · g ≤ g̃ ≤ v(k, k′, η)2n−2u(k, k′)2n−4 · g

From the results of Proposition 2.3 and remember that, for pinched metrics
C1 · g ≤ g̃ ≤ C2 · g (C1 and C2 are to strictly positive constants) we get

C
1
2
1 · diam(M, g) ≤ diam(M, g̃) ≤ C

1
2
2 · diam(M, g)

and

C
n
2
1

C
n
2 +1
2

λi(g) ≤ λ(g̃) ≤ C
n
2
2

C
n
2 +1
1

λi(g) .

(se also the Classic Lemma 2.2), the following estimates naturally arise:

diam(M, g̃) ≤ diam(M, g) · v(k, k′, η)n−1 · u(k, k′)n−2

and
λ1(g̃) ≤ v(k, k′)n

2−n u(k, k′, η)n
2−n+2 · λ1(g).

Putting the previous inequalities in (4.1) we obtain

λD1 (M]M, g̃) · diam2(M, g) ≥ C ′(n,D, k, k′, η)

λN1 (M]M, g̃) · diam2(M, g) ≥ C ′(n,D, k, k′, η)
(4.2)

being C ′(n,D, k, a, η) = 1
4C (Θ(k, η) ·D) · u(k, k′)2−n

2−n v(k, k′, η)2−n
2−n .

The inequalities from 4.2 show the existence of the constant C ′ which de-
pends on n , D , k , k′ and η as in the statement, and concurrently give a
lower bound of the first non-zero eigenvalue of the Laplacian of the manifold
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(M,∂M, g) . �

Estimates of the p-th eigenvalue of the Laplacian are available thanks to
the results of Cheng (see [1], 1975) for compact n–dimensional Riemmanian
manifolds with Ricci curvature bounded from below.

Theorem 4.3. (Cheng, (1976), [1]: Corollary 2.3) Let (M, g) be a n-dimen-
sional Riemannian manifold with diameter D and Ricci curvature bounded
from below by −(n− 1)δ2 · g , then

• when n = 2(m+ 1) , m ∈ N ∪ {0}

λp(M, g) ≤ 2m+ 1

4
δ +

4p2(1 + 2m)2π2

D2
;

• when n = 2m+ 3 , m ∈ N ∪ {0}

λp(M, g) ≤ 2m+ 2

4
δ +

4p2(1 + 22m)2(1 + π2)

D2
.

The following Theorem extends the previous result:

Theorem 4.4. With the same assumptions of Theorem 4.2 the p-th eigenvalue
is raised by:

• when n = 2(m+ 1) , m ∈ N ∪ {0}

λp(M]M, g̃) ≤

[v(k, k′, η)u(k, k′)]
n−n2

·
(

2m+ 1

4
δ +

4p2(1 + 2m)2π2

D2
u2(k, k′)

)
;

• when n = 2m+ 3 , m ∈ N ∪ {0}

λp(M]M, g̃) ≤

[v(k, k′, η)u(k, k′)]
n−n2

·
[

2m+ 2

4
δ +

4p2(1 + 22m)2(1 + π2)

D2
u2(k, k′)

]
.

Proof: The proof is the same as in the Proposition 4.2 with the suitable
modification of the diameter value given by the Proposition 3.3. �

Estimates of the topologic invariants are given by the following
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Theorem 4.5. (Gromov (1981), [3]) Let (M, g) be a compact connected n-
dimensional Riemannian manifold, and δ and D two positive numbers such
that Riccig ≥ −δ2(n− 1)g and diamg(M) ≤ D , then there exists a constant
C, which depends on the product δ ·D and on the dimension n, such that

dimH1(M) ≤ n · exp(n δ ·DC(δ ·D)) .

Previous Theorem is so extended by the following

Theorem 4.6. With the same assumptions of the Theorem 4.2, we have:

dimH1(M) + dimH1(M,∂M) ≤ n · exp(n · C ′(n,D, k, k′, η))

where C ′(n,D, k, a, η) is a constant that depends only on n, D, k, k′ , η .

Proof: Remembering that dimHi(M]M) = dimHi(M,∂M)+dimHi(M)
(see [4] (2011)), the proof is the same as in Proposition 4.2. In this case the
constant C ′ , after the regularization of the metric, is given by

C ′(n,D, k, k′, η) = C
[
Θ(k, η) ·D · u(k, k′)n−2 · v(k, k′, η)n−1

]
where C is the constant of Theorem 4.5. �
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